

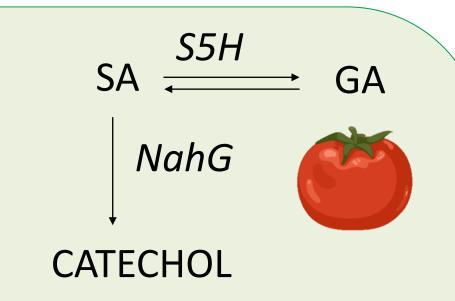
Development of novel antiviroidal strategies: Towards drug discovery

Stojkovska T¹, Di Serio F², Kalantidis K^{3,4}, Lisón P¹

¹Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV46011 Valencia, Spain.

- ² Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Bari, Italy ³ Department of Biology, University of Crete, Voutes University Campus, Heraklion, Crete, Greece.
- ⁴ Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece. stojkovska_teodora@hotmail.com

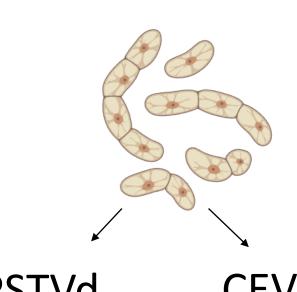
Introduction


- Viroids are the smallest known plant pathogens, composed of closed circular non-coding RNAs.
- They replicate autonomously inside host cells and trigger severe diseases in a wide range of crops.
- No effective treatments or control strategies are currently available.

Promising candidates that could be exploited as antiviroidal drugs

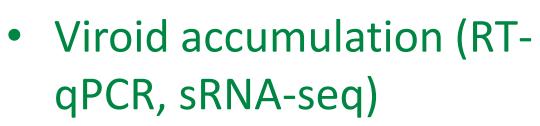
State of the art

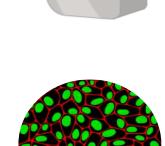
In our laboratory, we have demonstrated that several molecules contribute to tomato defense against viroids:


acid (SA): Key role in basal resistance. Tomato *NahG* lines are highly susceptible to CEVd (López-Gresa, 2016), while RNAi SIS5H silenced lines are tolerant (Payá et al., 2022)

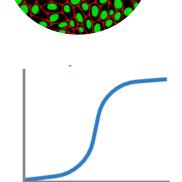
- y-aminobutyric acid (GABA) induced by BTH: enhances resistance by reversing hypersusceptibility and activating defense genes (López-Gresa et al., 2019).
- Polysome interaction blockers: Viroids localize to ribosomes; targeting this may relieve viroid-induced ribosome stress (Cottilli et al., 2019).
- Ethylene signaling modulators: Reducing ethylene delays disease progression and eases ribosomal stress (Vázquez-Prol et al., 2020).
- AZD8055 (TOR inhibitor): Restores autophagy and boosts tomato defenses, reducing PSTVd infection (Silva-Valencia et al., 2024).

Approach


1. Generate BY2-Vd cell system expressing PSTVd and CEVd



CEVd **PSTVd**


- 2. Screen compounds
- Salicylic acid
- GABA
- AZD8055
- Ethylene modulators
- Ribosome-targeting agents

3. Evaluate effects

 Subcellular localization (Microscopy)

Host response (PR1, NAC82 expression)

In planta validation

PSTVd CEVd

Tomato

(Solanum lycopersicum)

PSTVd

Tobacco

(Nicotiana benthamiana)

CChMVd Chrysanthemum (Chrysanthemum morifolium)

Avsunviroidae family

Pospiviroidae family

Research goals

- Establish a BY2 cell-based system to screen and identify compounds with antiviroidal activity.
- In planta validation of candidate compounds in diverse hosts and viroid families.
- Demonstrate the mechanistic basis of action.
- Contribute to future crop protection solutions against emerging viroid threats.